Physiological and Genetic Description of Dissimilatory Perchlorate Reduction by the Novel Marine Bacterium Arcobacter sp. Strain CAB
نویسندگان
چکیده
A novel dissimilatory perchlorate-reducing bacterium (DPRB), Arcobacter sp. strain CAB, was isolated from a marina in Berkeley, CA. Phylogenetically, this halophile was most closely related to Arcobacter defluvii strain SW30-2 and Arcobacter ellisii. With acetate as the electron donor, strain CAB completely reduced perchlorate (ClO4(-)) or chlorate (ClO3(-)) [collectively designated (per)chlorate] to innocuous chloride (Cl(-)), likely using the perchlorate reductase (Pcr) and chlorite dismutase (Cld) enzymes. When grown with perchlorate, optimum growth was observed at 25 to 30°C, pH 7, and 3% NaCl. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations were dominated by free-swimming straight rods with 1 to 2 polar flagella per cell. Strain CAB utilized a variety of organic acids, fructose, and hydrogen as electron donors coupled to (per)chlorate reduction. Further, under anoxic growth conditions strain CAB utilized the biogenic oxygen produced as a result of chlorite dismutation to oxidize catechol via the meta-cleavage pathway of aerobic catechol degradation and the catechol 2,3-dioxygenase enzyme. In addition to (per)chlorate, oxygen and nitrate were alternatively used as electron acceptors. The 3.48-Mb draft genome encoded a distinct perchlorate reduction island (PRI) containing several transposases. The genome lacks the pcrC gene, which was previously thought to be essential for (per)chlorate reduction, and appears to use an unrelated Arcobacter c-type cytochrome to perform the same function. IMPORTANCE The study of dissimilatory perchlorate-reducing bacteria (DPRB) has largely focused on freshwater, mesophilic, neutral-pH environments. This study identifies a novel marine DPRB in the genus Arcobacter that represents the first description of a DPRB associated with the Campylobacteraceae. Strain CAB is currently the only epsilonproteobacterial DPRB in pure culture. The genome of strain CAB lacks the pcrC gene found in all other DPRB tested, demonstrating a new variation on the (per)chlorate reduction pathway. The ability of strain CAB to oxidize catechol via the oxygenase-dependent meta-cleavage pathway in the absence of external oxygen by using the biogenic oxygen produced from the dismutation of chlorite provides a valuable model for understanding the anaerobic degradation of a broad diversity of xenobiotics which are recalcitrant to anaerobic metabolism but labile to oxygenase-dependent mechanisms.
منابع مشابه
Production of bacteriocin by a novel Bacillus sp. strain RF 140, an intestinal bacterium of Caspian Frisian Roach (Rutilus frisii kutum)
Bacteriocins are proteinaceous antibacterial compounds that exhibit bactericidal activity against species closely related to the producer strain. The aim of this research was to investigate the production of bacteriocin by Bacillus spp. isolated from intestinal bacterial flora of the Caspian Frisian Roach (Rutilus frisii kutum). A bacteriocin produced by the bacterium Bacillus cereus strain RF ...
متن کاملPseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium.
A Gram-negative, facultatively anaerobic, rod-shaped, dissimilatory chlorate-reducing bacterium, strain AW-1(T), was isolated from biomass of an anaerobic chlorate-reducing bioreactor. Phylogenetic analysis of the 16S rDNA sequence showed 100% sequence similarity to Pseudomonas stutzeri DSM 50227 and 98.6% sequence similarity to the type strain of P. stutzeri (DSM 5190(T)). The species P. stutz...
متن کاملA novel low molecular weight extracellular protease from a moderately halophilic bacterium Salinivibrio sp. strain MS-7: production and biochemical properties
Kinetics of bacterial growth and protease production were monitored on a novel isolated moderately halophilic bacterium, Salinivibrio sp. strain MS-7, and maximum growth and protease activity was achieved after 48 hours at 30°C and 180 rpm. To determine the effect of various carbon sources on protease production, glucose, lactose, sucrose and maltose were investigated and maximum production of...
متن کاملDesulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium.
A novel marine sulfate-reducing bacterium, strain CV2803T, which is able to oxidize aliphatic hydrocarbons, was isolated from a hydrocarbon-polluted marine sediment (Gulf of Fos, France). The cells were rod-shaped and slightly curved, measuring 0.6x2.2-5.5 microm. Strain CV2803T stained Gram-negative and was non-motile and non-spore-forming. Optimum growth occurred in the presence of 24 g NaCl ...
متن کاملGreen extracellular synthesis of the Fe2O3 nanoparticles by a native marine bacterium, Alcaligenes sp. strain NV06
This study investigated the potential of aquatic bacteria for their ability as a biocatalyst to synthesized Fe2O3 nanoparticles using iron precursor, FeCl3. A total of 25 aquatic bacterial strains were isolated in trypticase soy agar plus 10 mM FeCl3 with selective enrichment technique. Among the bacterial strains evaluated, NV06 was the only strain able to synthesize Fe2O3 nanoparticles extrac...
متن کامل